Câu hỏi phỏng vấn Big-O Notation
Câu hỏi

Explain your understanding of "Space Complexity" with examples

Câu trả lời

Space complexity is a measure of the amount of memory an algorithm uses in relation to the size of the input data. It includes both the memory required to store the input data and any additional memory needed during the execution of the algorithm, known as auxiliary space. Understanding space complexity is crucial for optimizing algorithms, especially in environments with limited memory resources.

Definition and Importance

Space complexity quantifies the total memory space required by an algorithm to execute. It is typically expressed using Big-O notation, which describes the upper bound of the memory usage in terms of the input size $$ n $$. This helps in understanding how the memory requirements of an algorithm scale with increasing input sizes.

Components of Space Complexity

  1. Input Space: Memory required to store the input data.
  2. Auxiliary Space: Additional memory used by the algorithm, excluding the input data. This includes temporary variables, data structures, and the call stack in recursive algorithms.

Examples

Example 1: Constant Space Complexity $$ O(1) $$

An algorithm with constant space complexity uses a fixed amount of memory regardless of the input size. For instance, consider a function that swaps two integers:

cpp Copy
void swap(int &a, int &b) {
    int temp = a;
    a = b;
    b = temp;
}

In this example, the space complexity is $$ O(1) $$ because it uses a fixed amount of memory (for the variable temp), irrespective of the size of the input.

Example 2: Linear Space Complexity $$ O(n) $$

An algorithm with linear space complexity uses memory proportional to the input size. For example, consider a function that creates a copy of an array:

cpp Copy
int* copyArray(int* arr, int n) {
    int* newArr = new int[n];
    for (int i = 0; i < n; i++) {
        newArr[i] = arr[i];
    }
    return newArr;
}

Here, the space complexity is $$ O(n) $$ because the memory required to store the new array newArr grows linearly with the size of the input array arr.

Example 3: Quadratic Space Complexity $$ O(n^2) $$

An algorithm with quadratic space complexity uses memory proportional to the square of the input size. For instance, consider a function that creates a 2D array (matrix) of size $$ n \times n $$:

cpp Copy
int** createMatrix(int n) {
    int** matrix = new int*[n];
    for (int i = 0; i < n; i++) {
        matrix[i] = new int[n];
    }
    return matrix;
}

In this case, the space complexity is $$ O(n^2) $$ because the memory required to store the matrix grows quadratically with the size of the input $$ n $$.
...

middle

middle

Gợi ý câu hỏi phỏng vấn

middle

What is the time complexity for "Hello, World" function?

junior

Why do we use Big O notation to compare algorithms?

junior

What the heck does it mean if an operation is O(log n) ?

Bình luận

Chưa có bình luận nào

Chưa có bình luận nào